

NTSB National Transportation Safety Board

Collaboration to

Reduce Risk

and

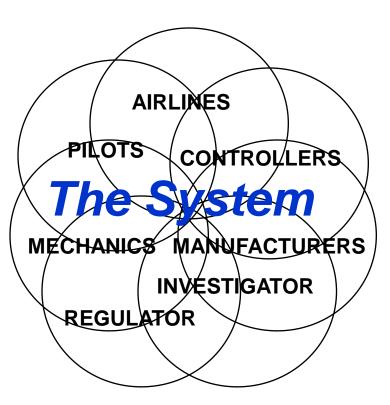
Improve Productivity

Presentation to: Public Service Electric & Gas Co.

Name: Christopher A. Hart

Date: March 13, 2012

<u>Outline</u>


- Collaboration to
 - Reduce risk
 - Investigate mishaps
- Improving Productivity
- Role of
 - Leaders
 - Regulators

The Context: Increasing Complexity

More System
 Interdependencies

- Large, complex, interactive system
- Often tightly coupled
- Hi-tech components
- Continuous innovation
- Ongoing evolution
- Safety Issues Are More Likely to Involve

Interactions Between Parts of the System

Effects of Increasing Complexity:

More "Human Error" Because

- System More Likely to be Error Prone
- Operators More Likely to Encounter Unanticipated Situations
- Operators More Likely to Encounter Situations in Which "By the Book" May Not Be Optimal ("workarounds")

<u>The Solution – System Think</u>

An awareness of how a change in one subsystem of a complex system may affect other subsystems within that system

"System Think" via Collaboration

Bringing all parts of a complex system together to

- Identify potential issues
- PRIORITIZE the issues
- Develop solutions for the prioritized issues
- Evaluate whether the solutions are
 - Accomplishing the desired result, and
 - Not creating unintended consequences

What Constitutes a "System?"

- "System" can be defined at any level, including
 - Entire industry
 - Company (some or all)
 - Type of activity
 - Facility
 - Team

Collaboration: A Major Paradigm Shift

- Old: "Leader" identifies a problem and proposes solutions
 - Prospective implementers are skeptical of leader's understanding of the problem
 - Prospective implementers resist leader's solutions and/or implement them begrudgingly
- New: Collaborative "System Think"
 - Implementers involved in identifying problem
 - Implementers have "ownership interest" re solution because everyone had input, everyone's interests mutually considered
 - Prompt and willing implementation (and tweaking)
 - Solution probably more effective and efficient
 - Unintended consequences much less likely

March 12, 2012 PSE&G

Challenges of Collaboration

- Human nature: "I'm doing great . . . the problem is everyone else"
- Differing and sometimes competing interests
 - Labor-management issues between participants
 - Participants are potential adversaries
- "Leader" (regulator?) probably not welcome
- Not a democracy
 - Leader must lead (regulator must regulate)
- Requires all to be willing, in their enlightened self-interest, to leave their "comfort zone" and think of the System

March 12, 2012 PSE&G

Collaboration Can Be Used To:

Reduce risk
 (to prevent mishaps)

and

• Analyze mishaps (to determine what to fix)

Collaboration to Reduce Risk

Is the Person Clumsy?

Or Is the Problem . . .

The Step???

Enhance Understanding of Person/System Interactions By:

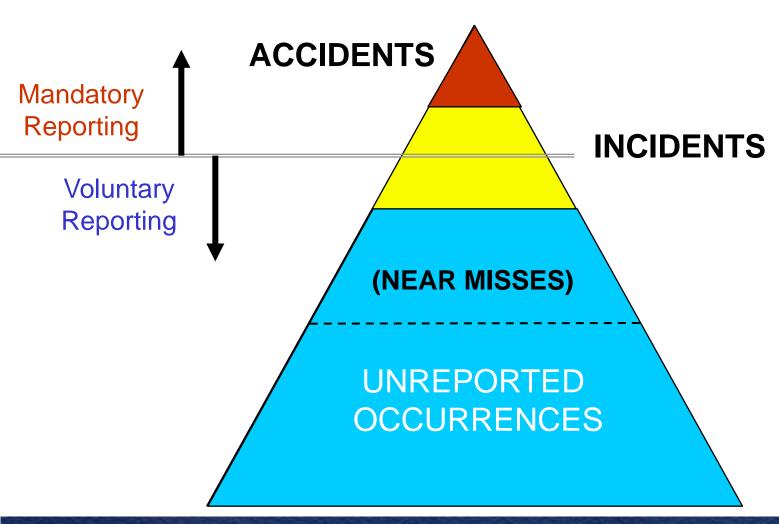
- Collecting,
- Analyzing, and
- Sharing

Information

Objectives:

Make the System

(a) Less Error Prone


and

(b) More Error Tolerant

Current System Data Flow

Heinrich Pyramid

15

Major Source of Information: Hands-On "Front-Line" Employees

"We Knew About That Problem"

(and we knew it might hurt someone sooner or later)

Legal Concerns That Discourage Collection, Analysis, and Sharing

- Public Disclosure
- Job Sanctions and/or Enforcement
- Criminal Sanctions
- Civil Litigation

Typical "Cultural" Barrier

"Safety First"

Middle Management

"Production First"

PSE&G

Front-Line **Employees**

"Please the Boss First...

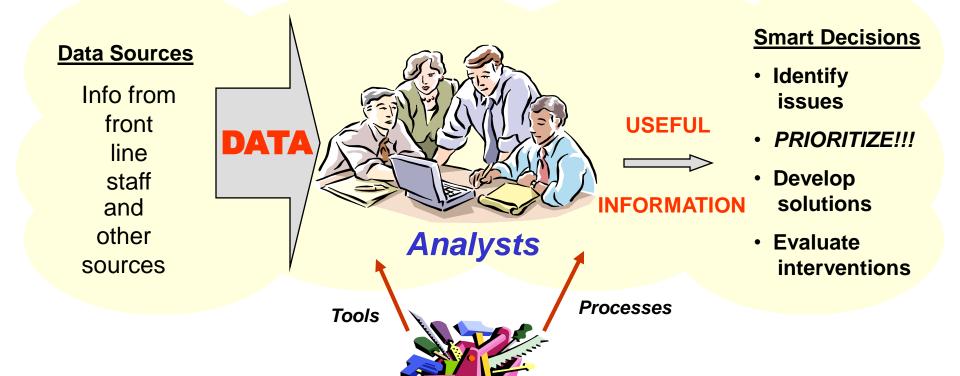
18

THEN Consider Safety?"

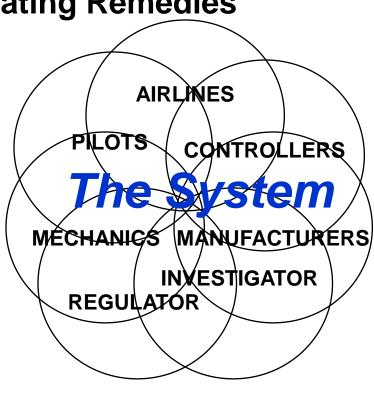
Next Challenge

Legal/Cultural Issues

Improved Analytical Tools


As we begin to get over the first hurdle, we must start working on the next one . . .

Information Overload


From Data to Information

Tools and processes to convert large quantities of data into useful information

Aviation "System Think" Success

- Engage <u>All</u> Participants In Identifying Problems and Developing and Evaluating Remedies
- Airlines
- Manufacturers
 - With the systemwide effort
 - With their own end users
- Air Traffic Organizations
- Labor
 - Pilots
 - Mechanics
 - Air traffic controllers
- Regulator(s) [Query: Investigator(s)?]

Aviation Success Story

65% Decrease in Fatal Accident Rate,

1997 - 2007

largely because of

System Think

fueled by

Proactive Safety Information Programs

P.S. Aviation was already considered *VERY SAFE* in 1997!!

Footnote

This collaborative process was successful

without generating

any new regulations!!

Manufacturer "System Think" Success

Aircraft manufacturers are increasingly seeking input, throughout the design process, from

- Pilots

(*User* Friendly)

- Mechanics

(*Maintenance* Friendly)

- Air Traffic Services (System Friendly)

Failure: Could Better Information Have Broken the Chain?

- Strasbourg, France, 1992
- Risk Factors
 - Night, Mountainous Terrain
 - No Ground Radar
 - No Ground-Based Glideslope Guidance
 - No Airborne Terrain Alerting Equipment
- Very Sophisticated Autopilot
- Autopilot Mode Ambiguity

Autopilot Mode Ambiguity

- "3.2" in the window, with a decimal, means:
 - Descend at a 3.2 degree angle (about 700 fpm at 140 knots)
- "32" in the window, without a decimal, means:
 - Descend at 3200 fpm
- Clue: Quick Changes in Autopilot Mode Frequently Signal a Problem
- Flight data recorder readout program could have helped safety experts uncover this problem

Another Failure: Inadequate "System Think"

- 1995 Cali, Colombia
- Risk Factors
 - Night
 - Airport in Deep Valley
 - No Ground Radar
 - Airborne Terrain Alerting
 Limited to "Look-Down"
 - Last Minute Change in Approach
 - More rapid descent (throttles idle, spoilers)

PSE&G

- > Hurried reprogramming
- Navigation Radio Ambiguity
- Spoilers Do Not Retract With Power

Recommended Remedies Include:

Operational

Caution Re Last Minute Changes to the Approach

Aircraft/Avionics

- Enhanced Ground Proximity Warning System
- Spoilers That Retract With Max Power
- Require Confirmation of Non-Obvious Changes
- Unused or Passed Waypoints Remain In View

Infrastructure

- Three-Letter Navigational Radio Identifiers
- Ground-Based Radar
- Improved Reporting of, and Acting Upon, Safety Issues

Note: All but one of these eight remedies address system issues

NTSB 29

Collaboration if (when)

prevention fails

and a mishap occurs . . .

When Something Goes Wrong

How It Is Now . . .

You are highly trained

and

If you did as trained, you would not make mistakes

You weren't careful enough

SO

You should be PUNISHED!

How It Should Be . . .

You are human

and

Humans make mistakes

SO

Let's *also* explore why the system allowed, or failed to accommodate, your mistake

and

Let's IMPROVE THE SYSTEM!

Another Industry

To Err Is Human:

Building a Safer Health System

"The focus must shift from blaming individuals for past errors to a focus on preventing future errors by designing safety into the system."

Institute of Medicine, Committee on Quality of Health Care in America, 1999

Collaboration After Mishaps

- Collaboration is more difficult after a mishap because potential "cause agents" are more defensive
- Investigator should be unbiased and impartial (i.e., not one of the potential cause agents)
- The NTSB investigates to determine probable cause(s) and make recommendations to prevent recurrences
- NTSB relies extensively upon parties to help develop the facts
- NTSB selects parties for their ability to provide technical expertise
 - No attorneys/insurers
 - No plaintiffs/representatives

NTSB's Analysis

- Impartial and unbiased because NTSB is not a regulator or an operator, has "no dog in the fight"
- Also impartial because parties do not assist with analysis, done solely by NTSB
 - Impartiality more important than collaboration for the analysis
- Not admissible in court

Result of NTSB's Investigation

- Determination of probable cause(s)
- Objective is to determine cause(s), not liability or blame
- SINGLE FOCUS IS SAFETY
- Primary NTSB product: Safety recommendations to whomever can take appropriate corrective action
- Recommendation acceptance rate > 80%

How Can
Collaboration
Help Improve
Productivity???

36

Not Only Improved Safety, But Improved Productivity, Too

- Ground Proximity Warning System
 - S: Reduced warning system complacency
 - P: Reduced unnecessary missed approaches, saved workload, time, and fuel
 - Flap Overspeed
 - S: No more potentially compromised airplanes
 - P: Significantly reduced need to take airplanes off line for VERY EXPENSIVE (!!) disassembly, inspection, repair, and reassembly

But Then...

Why Are We

So Jaded in The Belief That

Improving Safety

Will Probably

Hurt The Bottom Line??

Costly Result\$ Of Safety Improvements Poorly Done

Safety **Poorly** Done

Safety Well Done

- 1. Punish/re-train operator
- -Poor workforce morale
- Poor labor-management relations

Look beyond operator, also consider system

issues

- Labor reluctant to tell management what's wrong
- Retraining/learning curve of new employee if "perpetrator" moved/fired
- Adverse impacts of equipment design ignored, problem may recur because manufacturers are not involved in improvement process
- Adverse impacts of procedures ignored, problem may recur because procedure originators (management and/or regulator) are not involved in improvement process

Costly Result\$ Of Safety Poorly Done (con't)

Safety **Poorly** Done

Safety Well Done

Apply "System Think,"

and solve problems

with workers, to identify

- 2. Management decides remedies unilaterally
- Problem may not be fixed
- Remedy may not be most effective, may generate other problems
- Remedy may not be most cost effective, may reduce productivity
- Reluctance to develop/implement remedies due to past remedy failures
- Remedies less likely to address multiple problems
 - 3. Remedies based upon instinct, gut feeling

- Same costly results as No. 2, above

Remedies based upon evidence (including info from front-line workers)

Costly Result\$ Of Safety Poorly Done (con't)

Safety Poorly Done Safety Well Done

4. Implementation is last step

Evaluation after implementation

- No measure of how well remedy worked (until next mishap)
- No measure of unintended consequences (until something else goes wrong)

So . . . Is Safety Good Business?

- Safety implemented poorly can be very costly (and ineffective)
- Safety implemented well, in addition to improving safety more effectively, can also create benefits greater than the costs

Information Pipeline: <u>A Valuable Tool</u>

Information About Safety

And Productivity,
Efficiency,
Quality,
and Other Production Metrics

YE
WHO
CAN
FIX

Significant Opportunity

Bottom-Line Benefits From a Well-Implemented Safety Information Program Can Change the Dynamic From

"Another Safety Program
I Can't Afford"

To

\$\$\$ A Profit Center \$\$\$

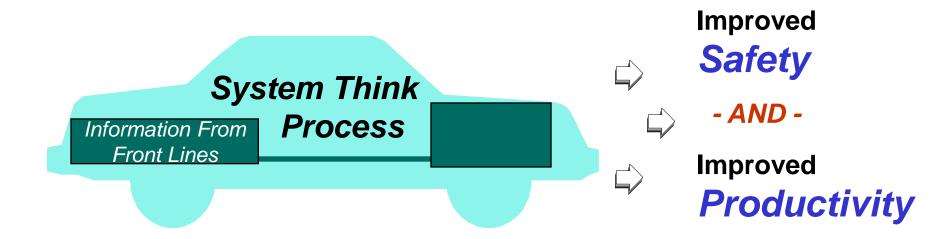
Other Potential Benefits:

Better Labor Relations

- Transforms workforce from brunt of blame when things go wrong, to valuable source of information about potential problems and how to remedy them, *i.e.*, converts labor and management from *Adversaries* to *Partners in Improvement*

Reduced Legal Exposure

- Collecting, analyzing, and sharing will become industry standard for most, if not all, potentially hazardous endeavors; woe to those who don't


The Role of Leadership

- Demonstrate Safety Commitment . . . But Acknowledge That Mistakes Will Happen
- Include "Us" (e.g., System) Issues,
- Not Just "You" (e.g., Training) Issues
- Make Safety a Middle Management Metric
- Engage Labor Early
- Include the *System* -- Manufacturers, Operators, Regulator(s), and Others
- Encourage and Facilitate Reporting
- Provide Feedback
- Provide Adequate Resources
- Follow Through With Action

How The Regulator Can Help

- Emphasize importance of System issues in addition to (not instead of) worker issues
- Encourage and participate in industry-wide "System Think"
- Facilitate collection and analysis of information
 - Clarify and announce policies for protecting information and those who provide it
 - Encourage other industry participants to do the same
 - Recognize that *compliance* is very important, but the *mission is reducing systemic risk*

Conclusion: Process Plus Fuel Enables A Win-Win

PSE&G

Thank You!!!

Questions?